首页 >> 要闻 > 校园趣事 >

斐波那契数列通项公式图片(斐波那契数列通项公式)

2022-12-21 06:00:38 来源: 用户: 

您好,今天柳柳来为大家解答以上的问题。斐波那契数列通项公式图片,斐波那契数列通项公式相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、一.斐波那契数列的通项公式斐波那契数列指的是这样一个数列: 1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和 它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

2、 该数列有很多奇妙的属性 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值 二.斐波那契数列的通项公式的推导 由an+2= an+1+an有an+2- an+1- an=0构造特征方程 x2-x-1=0,令它的两个根是p,q 有pq=-1 p+q=1下面我们来证 {an+1-pan}是以q为公比的等比数列。

3、为了推导的方便,令a0=1,仍满足an+2= an+1+anan+1-pan= an+an-1 -pan= (1-p) an-pqan-1=q(an-pan-1)所以:{an+1-pan}是以q为公比的等比数列。

4、a1-pa0=1-p=q所以 an+1-pan=q*qn=qn+1 ①同理 an+1-qan=p*pn=pn+1 ②①-②:(q-p)an= qn+1-pn因p=(1-√5)/2,q=(1+√5)/2,q-p=√5,所以an=(1/√5){[(1+√5)/2]n+1-[(1-√5)/2] n+1}可验证a0,a1也适合以上通项公式。

5、三.关于斐波那契数列及其通项公式的推倒斐波那契数列 “斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,籍贯大概是比萨,卒于1240年后)。

6、他还被人称作“比萨的列昂纳多”。

7、1202年,他撰写了《珠算原理》(Liber Abaci)一书。

8、他是第一个研究了印度和阿拉伯数学理论的欧洲人。

9、他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

10、他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

11、《达·芬奇密码》中还提到过这个斐波那契数列..菲波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和。

12、它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

13、 该数列有很多奇妙的属性 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值斐波那契数列别名斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

14、斐波那挈数列通项公式的推导斐波那挈数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。

15、那么这句话可以写成如下形式:F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。

16、通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2, X2=(1-√5)/2.则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1, -rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1) 那么:F(n)=s^(n-1)+r*F(n-1)= s^(n-1) + r*s^(n-2) + r^2*F(n-2)= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n - r^n)/(s-r)r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}四.斐波那契数列通项公式推导方法 Fn+1=Fn+Fn-1 两边加kFn Fn+1+kFn=(k+1)Fn+Fn-1 当k!=1时 Fn+1+kFn=(k+1)(Fn+1/(k+1)Fn-1) 令 Yn=Fn+1+kFn 若 当k=1/k+1,且F1=F2=1时 因为 Fn+1+kFn=1/k(Fn+kFn-1) => Yn=1/kYn-1 所以 Yn为q=1/k=1(1/k+1)=k+1的等比数列 那么当F1=F2=1时 Y1=F2+kF1=1+k*1=k+1=q 根据等比数列的通项公式 Yn=Y1q^(n-1)=q^n=(k+1)^n 因为k=1/k+1=>k^2+k-1=0 解为 k1=(-1+sqrt(5))/2 k2=(-1-sqrt(5))/2 将k1,k2代入 Yn=(k+1)^n ,和Yn=Fn+1+kFn 得到 Fn+1+(-1+sqrt(5))/2Fn=((1+sqrt(5))/2)^2 Fn+1+(-1+sqrt(5))/2Fn=((1-sqrt(5))/2)^2 两式相减得 sqrt(5)Fn=((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2 Fn=(((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2)/sqrt(5)。

本文就为大家分享到这里,希望小伙伴们会喜欢。

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章