圆的性质定理九年级(圆的性质定理)
今天小编肥嘟来为大家解答以上的问题。圆的性质定理九年级,圆的性质定理相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、有关圆的基本性质与定理⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。
2、 圆与直线相切圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
3、圆也是中心对称图形,其对称中心是圆心。
4、 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
5、逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
6、 ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
7、 一条弧所对的圆周角等于它所对的圆心角的一半。
8、 直径所对的圆周角是直角。
9、90度的圆周角所对的弦是直径。
10、 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
11、 ⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。
12、外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等; ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
13、 ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长) ④两相切圆的连心线过切点(连心线:两个圆心相连的直线) ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
14、 (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
15、 (5)圆心角的度数等于它所对的弧的度数。
16、 (6)圆周角的度数等于它所对的弧的度数的一半。
17、 (7)弦切角的度数等于它所夹的弧的度数的一半。
18、 (8)圆内角的度数等于这个角所对的弧的度数之和的一半。
19、 (9)圆外角的度数等于这个等于这个角所截两段弧的度数之差的一半。
20、 〖有关切线的性质和定理〗圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
21、 切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
22、 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
23、(2)经过切点垂直于切线的直线必经过圆心。
24、(3)圆的切线垂直于经过切点的半径。
25、 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
26、 〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr^23.扇形弧长l=nπr/180 4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长) 【圆的解析几何性质和定理】〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
27、 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。
28、其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
29、该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。
30、 圆的离心率e=0,在圆上任意一点的曲率半径都是r经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2 〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
31、利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
32、 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
33、 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
34、 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
35、令y=b,求出此时的两个x值xx2,并且规定x1
本文就为大家分享到这里,希望小伙伴们会喜欢。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
大众CC作为一款备受关注的中型轿车,凭借其优雅的设计和出色的性能一直吸引着众多消费者的目光。2025款大众CC...浏览全文>>
-
2025款阜阳途锐新车正式上市,凭借其卓越的性能和豪华配置吸引了众多消费者的关注。这款车型以最低售价55 88...浏览全文>>
-
在准备购买一辆汽车之前,了解车辆的落地价格是非常重要的。所谓落地价,是指购车时除了车款之外还需要支付的...浏览全文>>
-
安徽淮南地区的长安启源E07作为一款备受关注的新能源车型,凭借其时尚的设计、丰富的配置以及出色的续航能力,...浏览全文>>
-
安徽淮南长安启源A05 2025款新车现已正式上市,这款车型以其高性价比和出色性能吸引了众多消费者的关注。作为...浏览全文>>
-
安徽阜阳地区的威然车型在近期进行了配置上的升级,对于想要购买这款MPV的消费者来说,这是一个值得关注的消息...浏览全文>>
-
随着汽车市场的不断发展,SUV车型因其宽敞的空间和多功能性受到了越来越多消费者的青睐。作为大众旗下的高端旗...浏览全文>>
-
安徽蚌埠地区想要购买长安启源E07这款新能源汽车的朋友,可以参考以下信息来做出更明智的选择。长安启源E07定...浏览全文>>
-
随着汽车市场的不断发展,2025款安庆高尔夫作为一款备受关注的车型,其价格和配置自然成为消费者热议的话题。...浏览全文>>
-
近期,安徽蚌埠地区的帕萨特车型迎来了新一轮的价格调整,其落地价再次创下新低,吸引了众多消费者的关注。作...浏览全文>>
- 悉尼最后几个年薪低于 10 万美元的郊区
- 2025 年新南威尔士州值得投资的地方
- 揭秘在澳大利亚买房需要多少收入
- 悉尼最后几个年薪低于 10 万美元的郊区
- 昆士兰有望成为澳大利亚房地产强国之一
- MSI 推出首款双模式 4K 曲面电竞显示器
- 飞利浦 Screeneo GamePix 900:在发布前进行预览
- 您会在这个奇怪的电动露营三轮车里露营吗
- Meross 推出支持 Matter 的智能恒温器
- 配备出色 3K OLED 显示屏的 Acer Swift 16 现已降价至史上最低价
- Acer Predator Helios 18 RTX 4080 游戏笔记本电脑 现优惠 725 美元
- VivoX200Pro视频和新样张揭示了200MP蔡司变焦相机的锐利眼睛可以达到多远
- 派对氛围天文爱好者又一次欣赏到极光秀
- iPhone16相机控制按钮有史以来最不苹果的东西
- 贾雷尔夸萨与利物浦签订新合同
- 首款在安兔兔上得分300万的手机拥有非常强大的SoC即将发布
- HumaninMotionRobotics的自平衡XoMotion外骨骼获得加拿大批准用于物理治疗
- 龙宫样本对之前关于富碳小行星形成的观点提出了质疑
- 凯文德布劳内伤情更新曼城球星的伤势进展和可能的回归日期
- 实验室实验表明用核武器轰炸一颗巨大的小行星可以拯救地球