诱导多能干细胞(诱导)
今天小编肥嘟来为大家解答以上的问题。诱导多能干细胞,诱导相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
2、 编辑本段常用的诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 奇变偶不变,符号看象限。
3、 “奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余 弦,正切变余切。
4、(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
5、 一全正;二正弦;三两切;四余弦 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
6、 编辑本段其他三角函数知识同角三角函数的基本关系式 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
7、 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
8、(主要是两条虚线两端的三角函数值的乘积)。
9、由此,可得商数关系式。
10、 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
11、 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α)) 半角的正弦、余弦和正切公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα 万能公式 sinα=2tan(α/2)/(1+tan^2(α/2)) cosα=(1-tan^2(α/2))/(1+tan^2(α/2)) tanα=(2tan(α/2))/(1-tan^2(α/2)) 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) 三角函数的和差化积公式 sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2) sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2) cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2) 三角函数的积化和差公式 sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)] 编辑本段公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。
12、 同理可推导余弦的万能公式。
13、正切的万能公式可通过正弦比余弦得到。
14、 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
本文就为大家分享到这里,希望小伙伴们会喜欢。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
大众CC作为一款备受关注的中型轿车,凭借其优雅的设计和出色的性能一直吸引着众多消费者的目光。2025款大众CC...浏览全文>>
-
2025款阜阳途锐新车正式上市,凭借其卓越的性能和豪华配置吸引了众多消费者的关注。这款车型以最低售价55 88...浏览全文>>
-
在准备购买一辆汽车之前,了解车辆的落地价格是非常重要的。所谓落地价,是指购车时除了车款之外还需要支付的...浏览全文>>
-
安徽淮南地区的长安启源E07作为一款备受关注的新能源车型,凭借其时尚的设计、丰富的配置以及出色的续航能力,...浏览全文>>
-
安徽淮南长安启源A05 2025款新车现已正式上市,这款车型以其高性价比和出色性能吸引了众多消费者的关注。作为...浏览全文>>
-
安徽阜阳地区的威然车型在近期进行了配置上的升级,对于想要购买这款MPV的消费者来说,这是一个值得关注的消息...浏览全文>>
-
随着汽车市场的不断发展,SUV车型因其宽敞的空间和多功能性受到了越来越多消费者的青睐。作为大众旗下的高端旗...浏览全文>>
-
安徽蚌埠地区想要购买长安启源E07这款新能源汽车的朋友,可以参考以下信息来做出更明智的选择。长安启源E07定...浏览全文>>
-
随着汽车市场的不断发展,2025款安庆高尔夫作为一款备受关注的车型,其价格和配置自然成为消费者热议的话题。...浏览全文>>
-
近期,安徽蚌埠地区的帕萨特车型迎来了新一轮的价格调整,其落地价再次创下新低,吸引了众多消费者的关注。作...浏览全文>>
- 悉尼最后几个年薪低于 10 万美元的郊区
- 2025 年新南威尔士州值得投资的地方
- 揭秘在澳大利亚买房需要多少收入
- 悉尼最后几个年薪低于 10 万美元的郊区
- 昆士兰有望成为澳大利亚房地产强国之一
- MSI 推出首款双模式 4K 曲面电竞显示器
- 飞利浦 Screeneo GamePix 900:在发布前进行预览
- 您会在这个奇怪的电动露营三轮车里露营吗
- Meross 推出支持 Matter 的智能恒温器
- 配备出色 3K OLED 显示屏的 Acer Swift 16 现已降价至史上最低价
- Acer Predator Helios 18 RTX 4080 游戏笔记本电脑 现优惠 725 美元
- VivoX200Pro视频和新样张揭示了200MP蔡司变焦相机的锐利眼睛可以达到多远
- 派对氛围天文爱好者又一次欣赏到极光秀
- iPhone16相机控制按钮有史以来最不苹果的东西
- 贾雷尔夸萨与利物浦签订新合同
- 首款在安兔兔上得分300万的手机拥有非常强大的SoC即将发布
- HumaninMotionRobotics的自平衡XoMotion外骨骼获得加拿大批准用于物理治疗
- 龙宫样本对之前关于富碳小行星形成的观点提出了质疑
- 凯文德布劳内伤情更新曼城球星的伤势进展和可能的回归日期
- 实验室实验表明用核武器轰炸一颗巨大的小行星可以拯救地球